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Electrical and Computer Eng. Dept.: Started working in Jan 2015

Currently I’m the coordinator of the Power Area (we are 9 
Professors) and also collaborate with Control and Electronic 
areas

Teaching Experience includes:

• INEL 5417: Power Electronics Applied 

      to Renewable Energy Systems

• INEL 4416: Power Electronics

• INEL 6085: Advanced Power Electronics

• INEL 6058: High Frequency Power Converters 

• INEL 8496: Distributed Energy Resources

UPR founded in 1903,

Now: 11 campuses

UPR Mayagüez

Universidad de Puerto Rico - Mayagüez

1903
1911
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First Microgrid Lab at CID212

1

3
3

3
3

12

2

1 2 3
dSPACE System: Renewable Power 
models + Centralized Control systems

PWMs + 3 phases Current & 
Voltage sensor boards

DC/AC Converter 2.2kVA + 
Power Filter

Grant No. ACI-1541106. 

Co-PI at NSF CRISP Type 2: Interdependent 
Electric and Cloud Services for Sustainable, 
Reliable, and Open Smart Grids.

Seed funds 

GridEd - The Center for Grid Engineering 
Education

http://oasis.uprm.edu/
http://oasis.uprm.edu/
http://oasis.uprm.edu/
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NSF MRI: Development of a Real-world Microgrid 
Simulation/Testing AC Microgrid Instrument

PI at NSF MRI: Development of a Real-world Microgrid Simulation / Testing Instrument, $355,640.00 
(09/15/2018 – 31/08/2020)

Grant No. ACI-1541106. 
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NSF MRI Instrument:

Summer 
2017

Ago 2018
MRI Grant

Hurricane 
MARIA
Sept 2017

Dic 2018
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NSF MRI Instrument:

Jan 
2019

Earthquakes
Jan 2020

July 2020COVID Pandemic
Mar 2020
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Current Microgrid Laboratory at CID208
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CRISP Type 2: Interdependent Electric and Cloud Services for 
Sustainable, Reliable, and Open Smart Grids

Smart Grid ConceptProposed Open Access Smart Grid Proposed Software System Infrastructure 

Grant No. ACI-1541106. 

Co-PI at NSF CRISP Type 2: Interdependent Electric and Cloud Services for Sustainable, Reliable, and 
Open Smart Grids, $1,499,988.00 (09/15/2015 – 08/31/2019)

http://oasis.uprm.edu/
http://oasis.uprm.edu/
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Development and Validation of Models to Assess Dynamic 
Response of Converter-Dominated Power Systems across Multiple 

Spatiotemporal Scales

This proposal will bridge power systems and power electronics domains to develop research programs at UAF, SDSU, and UPRM in 
dynamic (tens of milliseconds to 30 seconds timeframe) and transient (milliseconds to hundreds of milliseconds timeframe) level modeling 
of converter-dominated power systems.  These programs will focus on exploring the use of converter-coupled generator models of varying 
complexity and detail for dynamic and transient timeframe power system simulations, and they will include a strong component of 
experimental validation.
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Resilient Operation Of Networked Community Microgrids 
With High Solar Penetration

This project proposes a novel development and evaluation of a microgrid controller (MGC) that 
coordinates the cluster operation of the Adjuntas MG to achieve high resiliency and cost-
effective operation. Two operation modes are considered – normal and self-healing. 
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Developing socially and economically generative, resilient PV-energy systems 
for low- and moderate-income communities: Applications for Puerto Rico

The project proposes innovative pathways for accelerating photovoltaic (PV) 

technology adoption among low- and moderate-income (LMI) communities 

in ways that generate positive social and economic benefits, including higher 

levels of energy security and socio-economic resilience.

(04/2019 – 03/2022)
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Collaborative Research on Resilient Infrastructure and 
Sustainability Education - Undergraduate Program (RISE-UP)

We propose to develop an interdisciplinary 
Resilient Infrastructure and Sustainability 
Education – Undergraduate Program (RISE-
UP). The program will provide the 
intellectual and practical academic space to 
generate case study research and turn them 
into hands-on solutions for real 
problems/projects, starting with the ones 
generated by the impact of Hurricanes Irma 
and Maria. 

Grant No. ACI-1832468. 

Senior Personnel at NSF Building Capacity: A Collaborative Undergraduate STEM Program in Resilient and 
Sustainable Infrastructure, $1,111,530.00 (10/01/2018 – 09/30/2023)

RIO PIEDRAS CAMPUS
• Environmental Design

MAYAGUEZ CAMPUS
• Civil Engineering
• Electrical Engineering
• Engineering Science 

and Materials
• Surveying

PONCE CAMPUS
• Construction

GOVERNMENT 

+

PRIVATE SECTOR

+

OTHER 
STAKEHOLDERS

Resilient Infrastructure 
and Sustainability Education / 
Undergraduate Program

http://riseup.upr.edu

https://www.uprm.edu/riseup/
https://www.uprm.edu/riseup/
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Microgrid Laboratory

Community Initiatives

Solar House Community InitiativesCommunity Initiatives

UPRM’s Microgrid Laboratory
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University of Puerto Rico-Mayagüez (UPRM)
The Electrical and Computer Engineering Department 

(www.ece.uprm.edu) 

Education Activities
Research – PhD and Msc theses
Outreach – go to Communities

http://www.ece.uprm.edu/
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9 Power Faculty expertise:

• microgrids, renewable energy sources, power 
electronics, electric vehicles

• Distributed Generation (DG), islanding detection
• smart rural power systems, appropriate 

technology, responsible wellbeing
• power system optimization, evolutionary 

computation, T&D design, 
• Illumination Engineering, electrical safety
• power systems dynamics, renewable energy 

resources
• power quality, social implications of technology

2019 EE Graduates (undergrad) per area
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Course code Course title/description

INEL 4103 Circuit Analysis III (basic 3 phase balanced power)

INEL 4405 Electric Machines

INEL 4406 Electric Machines Laboratory

INEL 4407-08 Electric Systems Design I and II - elec sys design for buildings

INEL 4409 Illumination Engineering

INEL 4415 Power Systems Analysis (pwr flow, econ. dispatch, faults)

INEL 4416 Introduction to Power Electronics

INEL 4417 Alternative Energy Generation (renewables)

INEL 5406 Transmission and Distribution Systems Design

INEL 5408 Motors Control, drives

INEL 5415 Power System Protection

INEL 5417 Power Electronics applied to renewables

Undergraduate power engineering courses
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Graduate power engineering courses

Course code Course title/description

INEL 5406 Transmission and Distribution Systems Design

INEL 5408 Motor Control

INEL 5415 Power System Protection

INEL 5417 Power Electronics applied to renewables

INEL 6025 Advanced Energy Conversion

INEL 6027 Power Systems Dynamics and Control

INEL 6028 Power Systems Optimization and Economic Operation

INEL 6058 High Frequency Power Converters

INEL 6066 Electric Drive Systems

INEL 6077 Surge Phenomena

INEL 6085 Advanced Power Electronics

INEL 6096 Power Quality
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An Introduction to Microgrid Control

Classical
electrical
system

Integration of 
DER
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An Introduction to Microgrid Control
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An Introduction to Microgrid Control



9/15/2024 23
15.09.2024 Page|23

An Introduction to Microgrid Control

“… MicroGrid concept assumes an aggregation of loads and microsources operating as a single system providing 
both power and heat. The majority of the microsources must be power electronic based to provide the required 
flexibility to insure operation as a single aggregated system …” [Lasseter et al, 2002]

MGCC

LC LC LC

DG DG R

Microgrid [Dimeas y Hatziargyriou, 2005] 
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Microgrid Configurations

Connection interface (CI)
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Microgrid Configurations

AC-DC Hybrid Microgrid
Hierarchy of loads
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Microgrid Configurations

Microgrid proposed by the CERTS (Consortium for Electric Reliability Technology Solutions)
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Microgrid operation modes:
• Grid connected

• Islanded

Typical structure of a flexible microgrid

. . . .

PV 

panel system

PCC

UPS

Common

AC bus

Distributed loads

Intelligent

Bypass

Switch

(IBS)

Wind turbine

Inverters

Renewable 
energy sources

Utility Grid

Microgrid operation



9/15/2024 28
15.09.2024 Page|28

Islanded / Grid-connected operation

• Operation modes and transfers of the flexible microgrid and 
Static Transfer Switch (STS)

From grid-connected an islanded modes, it is necessary a smooth transition.
For both modes, the converters could work as voltage sources!

STS = OFF

STS = ON

Grid 

Connected

E= Vg

=g

E= V*

=*

P= P* ; Q=Q*

Import/export

P/Q

Islanding

Operation

Synchronization

Current/Voltage

Source

Voltage

Source

Microgrid operation
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Woo-Cheol Lee “A Master and Slave Control Strategy for Parallel Operation 
of Three-Phase UPS Systems with Different Ratings”

. . . Load

Voltage
Source

(Master)

Current Controlled
Sources (Slave)

Im IoIsn
Is2Is1

Master-slave control

Microgrid operation
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Master-Slave control

This technique ensures exact current sharing, 
but needs for high-speed communications.
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Master-slave control

• Voltage source: grid forming units

• Current source: MPPT units. WT and PV

Current sharing is not necessary in this system
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University of Puerto Rico-Mayagüez (UPRM)
The Electrical and Computer Engineering Department 

(www.ece.uprm.edu) 

Education Activities

Research – PhD and Msc theses
Outreach – go to Communities

http://www.ece.uprm.edu/
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Research Activities
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Research Activities
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Research Activities
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AN INTEGRATED POWER SHARING CONTROL METHOD FOR THREE-PHASE 
INVERTER-BASED GENERATORS IN ISLANDED MICROGRIDS

University of Puerto Rico at Mayagüez

Electrical and Computer Engineering Department

Juan Felipe Patarroyo Montenegro, Ph.D. Candidate

Advisor: Dr. Fabio Andrade Rengifo

36

A dissertation submitted in partial fulfillment of the requirements for the degree of:

Doctor of Philosophy
in 

Electrical Engineering

© 2019 Juan Felipe Patarroyo - All Rights Reserved.   U.S Patent Pending
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Proposed Microgrid Scenario
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Parameter SYMBOL
Value

Grid Voltage 𝑉 120𝑉𝑅𝑀𝑆

DC bus Voltage 𝑉𝑑𝑐 350𝑉

Grid Frequency 𝑓 (𝜔𝑐) 60𝐻𝑧 (376.99 𝑟𝑎𝑑/𝑠)

Output Inductance 𝐿𝑜1,𝐿𝑜2,𝐿𝑜3 1.8𝑚𝐻, 1.8𝑚𝐻, 3.6𝑚𝐻

Input Inductance 𝐿𝑖1,𝐿𝑖2,𝐿𝑖3 1.8𝑚𝐻, 5.4𝑚𝐻, 3.6𝑚𝐻

Filter Capacitance 𝐶1, 𝐶2, 𝐶3 8.8𝜇𝐹

PWM Frequency 𝑓𝑃𝑊𝑀 10𝑘𝐻𝑧

Sampling Period 𝑇𝑠 100𝜇𝑠

Load 1 𝑅1, 𝐿1 85.7Ω, 0.46𝐻

Load 2 𝑅2, 𝐿2 171.43Ω, 0.53𝐻

Microgrid Parameters
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Microgrid Models
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Parameter SYMBOL
Value

Error Weighting Matrix 𝑄𝑝1, 𝑄𝑝2, 𝑄𝑝3 5, 4.9, 4.8 × 103 × 𝐼2×2

Input Weighting Matrix 𝑅𝑝1, 𝑅𝑝2, 𝑅𝑝3 0.2, 0.15, 0.18 × 𝐼2×2

Inner Integrator Gain 𝐾𝑖1, 𝐾𝑖2, 𝐾𝑖3 1

Outer Integrator Gain 𝐾𝑠1, 𝐾𝑠2, 𝐾𝑠3 5

SOGI gain 𝐾𝑆𝐺 0.7

PLL Proportional Gain 𝐾𝑝𝑃 0.28307

PLL Integral Gain 𝐾𝑖𝑃 7.5102

Frequency Restoration Gain 𝐾𝑓 100

Power Rating 𝑆1, 𝑆2, 𝑆3 500, 1000, 1500 𝑉𝐴

Voltage Restoration Gain (Active) 𝐾𝑝1, 𝐾𝑝2, 𝐾𝑝3 1000, 2000, 3000

Voltage Restoration Gain (Reactive) 𝐾𝑞1, 𝐾𝑞2, 𝐾𝑞3 −1000,−2000,−3000

Control Parameters
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Grid-connected Mode Experimental Results
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CONTRIBUTION TO THE POWER-SHARING CONTROL STRATEGIES 
FOR MICROGRIDS
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Experimental Results (Testbed)
System Parameters: Experimental testbed.
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Experimental Results (Droop)

Both controllers used the same Active power 
step in the experimental testbed.

Active Power step = 500W 
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Experimental Results (VSG)

Both controllers used the same Reactive 
power step in the experimental testbed.

Ractive Power step = 200W 
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Introduction: Parameterization IBGs Models

Figure 4: IBGs aggregated modeling illustration

• Aggregated models such as PVD1, 

DER_A, repc, among others, have been 

proposed to represent the dynamics of  

hundreds of  IBGs.

• Identification of  parameter values in 

aggregated models is a crucial and 

meticulous process, as they consist of  

several parameters whose estimation 

requires rigor in order to provide an 

accurate mathematical model.
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Used to represent the aggregation of a large number of inverter-

interfaced DERs. (i.e., utility-scale wind, solar photovoltaic (PV), 
and battery energy storage resources). 
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Results and Analysis - Parameterization Methodology Validation

Aggregated DER_A Model Connected to the Grid 
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Step # 1 – Voltage Control Dynamics (Using Known Parameters)

Results and Analysis - Parameterization Methodology Validation

Step Parameter
True    

Value

Estimated                      

Value
State 

Fit Based on 

NRMSE (%)

#1 Voltage 

Control 

Dynamics

Trv 0.02 s 0.0206 s

kqv 5 pu 4.8173 pu VtFilt (S0) 99.0654

dbd1 -0.05 pu -0.0479 pu Iq (S3) 99.5867

dbd2 0.05 pu 0.0482 pu Iimpd (S10) 96.3428

Tg 0.06 s 0.0599 s Iimpq (S11) 99.8867

Re 0.01  pu 0.0088 pu

Xe 0.2 pu 0.2034 pu
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Results and Analysis - Parameterization Methodology Validation

Proposed Methodology Applied to a Detailed System
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Results and Analysis - Parameterization Methodology Validation

Proposed Methodology Applied to a Detailed System
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Step # 1 – Voltage Control Dynamics

(Methodology Applied to a Detailed System)

Results and Analysis - Parameterization Methodology Validation

Step Parameter
Default 

Value

Estimated                      

Value
State 

Fit Based on 

NRMSE (%)

#1 Voltage 

Control 

Dynamics

Trv 0.02 s 0.00277 s

Iimpd (S10) 50.7245kqv 5 pu 15.1277 pu

dbd1 -0.05 pu -0.0191 pu

dbd2 0.05 pu 0.0200 pu

Iimpq (S11) 97.9008
Tg 0.06 s 0.0079 pu

Re N/A 0.0931 pu

Xe 0.2 pu 0.1724 pu

Xe Vt

j ṽ
Iq

Id 
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Iimp d,q
S10 - S11

E
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q e ed td d
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Step # 2-3 – Reactive - Active Power Dynamics

(Methodology Applied to a Detailed System)

Results and Analysis - Parameterization Methodology Validation

Step Parameter
Default 

Value

Estimated                      

Value
State 

Fit Based on 

NRMSE (%)

#2 Reactive 
Power 

Dynamics
Tiq 0.02 pu 0.0027 pu

Iimpd (S10) 51.1075

Iimpq (S11) 96.6813

#3 Active 
Power 

Dynamics
Tpord 0.02 pu 0.0025 pu

Iimpd (S10) 96.2887

Iimpq (S11) 52.1342
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UPRM
Leading & executing the energy transition
• First DG and microgrid studies in Puerto Rico
• Emphasis on a more distributed power system
• Strong presence in energy policy discussions
• Collaborations with National Laboratories
• Sustainable energy projects: research, teaching, consulting, policy & outreach

Community leaders during a Solar Communities Colloquium
Bayamón, Puerto Rico, April 2017.

Casa Pueblo-UPRM PV Lab. First 
interconnected system in PR, 2008

Villa Turabo: First Solar Community in PR
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Challenges in Puerto Rico

• Physical limitations: Islanded system – no external support

• Power flows from South (generation) to North (demand)

• Dependence on imported fossil fuels (over 95%)

• Reduced demand

• Electric grid
• Transmission voltages: 230 kV, 115 kV
• Sub-transmission: 38 kV
• Distribution (e.g., 4.16 kV, 8.32 kV, 13.2 kV)

• Bankrupted utility

• Legacy centralized system:
• Not sustainable
• Not resilient
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Microgrids in Puerto Rico’s Reconstruction -Introduction

Rebuilding Puerto Rico's power grid: The inside story - M Gallucci - IEEE Spectrum, 2018

Hurricane Maria Effects on Puerto Rico Electric Power Infrastructure - A. Kwasinski, F. Andrade, M. Castro-Sitiriche, and E. O’Neill-Carrillo

Photo: Erika P. Rodriguez

Hurricane Maria made landfall on September 20, 

2017 in Puerto Rico as a category 4 hurricane.

Photo: Alexis Kwasinski 

Photo: Alexis Kwasinski Photo: Erika P. Rodriguez
Photo: Erika P. Rodriguez
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Microgrids in Puerto Rico’s Reconstruction
After Maria….

Location of last 28,814 homes reconnected to the grid, partial (red) and completed (green)
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Puerto Rico’s context

After a disaster, rely only on your community

• Hurricanes & earthquakes 
• Usually, impacts to T&D & centralized power plants respectively

• Humid, hot, corrosive, drought conditions, strong/extreme winds 
(storms)

• Dated, conventional, low-inertia power systems
• Resilience is not valued properly
• Poor power quality
• Context and solutions are different from continental locations

• Market pushes unsuitable “solutions”, causing implementation problems, 
maintenance issues and confusion 

• “Poison the well” effect for other sustainable solutions

Oases of Light deployed after hurricane María
https://epics.ieee.org/solar-power-aid-puerto-rico/

E. O’Neill-Carrillo, Miguel A. Rivera-Quiñones. “Energy Policies in Puerto Rico and their Impact on the Likelihood of a Resilient 
and Sustainable Electric Power Infrastructure,” CENTRO, Journal of the Center for Puerto Rican Studies, Hunter College, no. 
3, vol. 30, 2018.

https://epics.ieee.org/solar-power-aid-puerto-rico/
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Lessons from hurricane María

Why did the power system fail? Why the slow response?
• Centralized electric system, Hurricane cat. 4 (1 mile shy of being cat. 5)

• Islanded system, no external support

• Transmission system (230kV, 115 kV) destroyed in the eastern half of Puerto Rico. 
• No way to supply the north (highest demand) from power plants in the south

• Distribution systems (13.2, 8.32, 7.2 & 4.16 kV) destroyed or damaged in most areas
• Quotes from Federal leaders in charge of response

• “Figuring out what we needed, took us a long time”, “Should have used regional communications 
from the beginning”, Described the organizational interactions as a “spaghetti chart”, “Number of 
voltages in the system, the diversity of components, was a logistical nightmare”

• FEMA had no plan for a disaster like this in Puerto Rico
• Slow state government response, lack of proper planning

• For example, over-reliance on cell phones and the internet

• Focus on the San Juan Metropolitan Area
• Forgotten: Western and Central regions remained uncommunicated for days

Source: “Rebuilding Puerto Rico Energy Sector Summit”, San Juan, PR, May 10, 2018 (Dr. Efraín O’Neill notes). 
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Lessons from hurricane María

What can be done

• Need to re-think disaster response in Puerto Rico
• Need to create a shared disaster response vision

• Must get away from traditional contingency planning, into resilience 
planning

• Better management; need to communicate as frequently as possible
• Avoid keeping people “in the dark”

• Must harden supporting infrastructures (e.g., communications)
• Standardization is critical to build a system that can be restored quicker
• Limit North-South transmission over the mountains
• The centralized electric power model is insufficient

• NEED FOR A RESILIENT, DECENTRALIZED ELECTRIC POWER SYSTEM
E. O’Neill-Carrillo, et al. “Stakeholder Perspectives on Increasing Electric Power Infrastructure Integrity.” ASEE Annual Conference, June 2019, Tampa.

A. Kwasinski, et al. "Hurricane Maria Effects on Puerto Rico Electric Power Infrastructure," in IEEE Power and Energy Technology Systems Journal, vol. 6, no. 1, March 2019
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Rooftop PV Systems

Solar communities and community microgrids for resilience

Beyond technology: communities, with appropriate partnerships, can further local socio-
economic initiatives to achieve energy sustainability, social and environmental justice.

Technology
Social and 

environmental 
justice

Sustainable 
energy

Citizen 
empowerment

E. O'Neill-Carrillo, et al. "Community Energy Projects in the Caribbean: Advancing Socio-Economic Development and Energy Transitions," IEEE Tech & Soc Mag, vol. 38, no. 3, Sept. 2019.

E. O’Neill-Carrillo, et al.: “The Long Road to Community Microgrids,” IEEE Electrif Mag, vol. 6, no. 4, Dec. 2018.
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Solar resource in Puerto Rico
Estimated average insolation in Puerto Rico, kWh/m2 per year

• Irizarry, O’Neill & 
Colucci, Achievable 
Renewable Energy 
Targets for Puerto 
Rico's Renewable 
Energy Portfolio 
Standard, 2009.
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Integration of Distributed Solar
25%, 50% and 75% PV penetration

• 5,000 MW new PV 
• Batteries ~5,300 MWh a 11,400 

MWh
• Distributed Solar + Batteries 

dominate in scenarios with higher 
penetration.

• Fast-track retirement of older fossil 
fleet (coal & oil)

+2X peak 
demand

100% 
resilient 
homes

75% 
resilient 
homes

50% 
resilient 
homes

Source: “Estudio de Integración de Recurso Solar Distribuido en Puerto Rico” https://cambiopr.org/solmastechos/ 

https://cambiopr.org/solmastechos/
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Generation profile
Significant change in daily generation

✔Batteries supply peak demand in the afternoon/night and the mornings’ ramps.

✔Combined cycle fleet increases output to replace coal and older oil plants.

✔Fossil fleet is reduced, main role in the 50% & 75% scenarios is regulation.

Source: “Estudio de Integración de Recurso Solar Distribuido en Puerto Rico” https://cambiopr.org/solmastechos/ 

https://cambiopr.org/solmastechos/


9/15/2024 69

Distribution System Analysis
912 feeders modeled (1,097 total, 89% of line miles)

• GIS data from the utility. OpenDSS 
model show to achieve 75% 
renewables we need:

• For line voltage or thermal 
violation change conductor (if 
change of conductor exceeds 2 
sizes re build line) – 15%

• For transformer back flow > 125% 
nominal for > 500 h change 
transformer – 4%

Source: “Estudio de Integración de Recurso Solar Distribuido en Puerto Rico” https://cambiopr.org/solmastechos/ 

https://cambiopr.org/solmastechos/
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Integration of Distributed Solar
Very high penetration of distributed, rooftop solar 
photovoltaic plus batteries is feasible with modest 
investment in distribution system (relative to IRP)

• Deployment of 100% residential solar rooftops + batteries will provide 2700 MW, 
adding commercial (rooftop and carports) allows generation of 75% of total annual 
energy demand from renewable sources by 2035.

• fossil fuel imports reduced by $600 millions annually most fossil fired generation 
retired

• 70% reduction of CO2 emissions 
• Dependency on transmission systems is significantly reduced
• Cost is less than the proposed IRP…

Source: “Estudio de Integración de Recurso Solar Distribuido en Puerto Rico” https://cambiopr.org/solmastechos/ 

https://cambiopr.org/solmastechos/
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Recommendations 
Planning and Operational Practice of Distribution Systems
• A more distributed power system in island, coastal, and remote 

communities
• Solar communities and community microgrids

• Distributed energy for local resilience 
• Widespread use of onsite renewable energy to yield LOCAL economic, 

social and environmental benefits
• A new role for conventional power system components
• A trained workforce, and an informed and active citizenry
• In Puerto Rico: Rooftop PV + storage residential cost (~ 20 cents/kWh) is 

less than grid price (34 cents/kWh today) 
• Electric vehicles 
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ResultsPlatform Design

Master's Thesis: Feasibility analysis of microgrid implementation in 

compliance with the Puerto Rico 9028-PREB Regulation. 

Deliverables
• Functional models (PV, battery, CHP models) of different 

distributed generators in MATLAB/Simulink (running in 
OPAL-RT).

• An extensive repository of MATLAB scripts and Simulink 
block diagrams to implement new possible scenarios such 
as: ramp rate strategies, system behavior, load demand 
and model behavior, etc.

*One publication whit Sandia National Laboratory (In progress).  
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Master's Thesis: Methodology to Implement a Microgrid in a University Campus

Model 
Resources

Energy 
Sources

Critical 
Loads

Load Profiles

Available 
spaces

PV

Bat

CHP

Location

Rooftops

Methodology

Reliability

Variations

One-Line 
Diagram

Parkings

Microgrid 
behavior

8

5

4

3

2

1

Determine the 

availables energy 

resources

Electric design

Data 

collection

Microgrid 

design

Simulation
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Master's Thesis: Methodology to Implement a Microgrid in a University Campus

Methodology
8
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Comparison between scenarios

Scenario Mode
Total Installed Capacity per 

microgrid [MW]

Estimated Initial Cost 

[Million USD]

PV Grid connected 1.4 2.4

PV+ Bat

Islanding

3+3.94 5+4.7

CHP 0.8 1.7

PV+Bat+CHP 1.4+1.5+0.4 2.4+1.7+0.8

Scenario Mode Need Area [m2]
Austerity 

Days

Load Interruption

State
Average duration per 

day [hours]

PV Grid connected 10,000 No N/A N/A

PV+ Bat

Islanding

21,000+1,600 Yes Yes 2.75

CHP 9 Yes No 0

PV+Bat+CHP 10,000+625+12 Yes Yes 1.48

Fuel Consumption per year

Scenario 3

Natural Gas $ 191,000

Propane Gas $  734,000

Methodology Validation
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Modeling of electrical systems

Solve power flow 

Operation

Power loss 

Voltage profiles

Fails analyze

Interface with MATLAB

Data analyze

Distribution system analyze

Implementation of optimization algorithms

Solar potential study

Optimal location of PV study

Master's Thesis: Optimal Integration Of Photovoltaic Generators Into The Puerto 

Rico Electrical Network
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System Description

Master's Thesis: OpenDss with Python and Matlab interface to simulate 

Adjuntas microgrid 

Demographic
• Adjuntas is a town of Puerto Rico
• In the downtown, there are commercial and residential buildings
• On the rooftop of each building, there are solar photovoltaic panels

• 1 Substation 8202
• 2 Triphasic and 6 Monophasic Transformers
• 39 buses
• 64 Lines about 2 Miles of total length
• 2 Residencial and 13 Commercial loads
• 10 PVSystems
• Battery Storage System missing
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Photo: Fabio Andrade, June 2020. 

Master's Thesis: Thesis: Analysis of the Solar Energy Potential on Roofs for A 

Low-Income community in Mayaguez Puerto Rico.
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Photo: Fabio Andrade, June 2020. 

Master's Thesis: Thesis: Analysis of the Solar Energy Potential on Roofs for A 

Low-Income community in Mayaguez Puerto Rico.
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Current state of the rooftops.

Photo: Fabio Andrade, June 2020. 

Master's Thesis: Thesis: Analysis of the Solar Energy Potential on Roofs for A 

Low-Income community in Mayaguez Puerto Rico.
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Data collection

• The community was divided into 
33 sections as shown in Figure. 
Each section has an average 
between 30 and 50 houses.

Barrio la Salud

Section Houses

33 1188

Master's Thesis: Thesis: Analysis of the Solar Energy Potential on Roofs for A 

Low-Income community in Mayaguez Puerto Rico.
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Solar potential map.

Source: Google Project Sunroof.

Master's Thesis: Thesis: Analysis of the Solar Energy Potential on Roofs for A 

Low-Income community in Mayaguez Puerto Rico.
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Beauty Salón Regia

Private post station

Juny’s Barber Shop

La Alborada Bakery

Casa

Apartamento

Example:
Castañer Microgrid (Pilot 

Project)

El Tesoro

Castañer Bakery Supermarket Mega Fresh

Restaurant El Sartén de Fary

Map from https://cambiopr.org/solmastechos/  

https://cambiopr.org/solmastechos/
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Energy Demand

Building Demand (kWh)
Beauty Salon Regia 6
Private post office 4
Juny’s Barber Shop 34

La Alborada Bakery & Restaurant 97
House 5

Apartment 5
Total 151
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Cost without microgrid

• Normal conditions: $0.24/kWh (currently, $0.29/kWh)
Cost without microgrid (from utility)

   $1,000 per month ($12,000 annual)

• After hurricane María: $1.20/kWh
Cost of electricity without microgrid (back-up generator)

   $5,350 monthly ($65,000 annual)
• Cost of diesel: $0.68 per liter
• Liters per hour: 10 L

• Annual demand: 55 MWh 
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Normal conditions: Cost with microgrid

• Similar to electricity from the utility before (currently, below)

• $0.24/kWh 

• Estimated investment: $180,000
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RESILIENT OPERATION OF NETWORKED COMMUNITY 
MICROGRIDS WITH HIGH SOLAR PENETRATION

TOPIC AREA 5.1: RESILIENT COMMUNITY MICROGRIDS

This project proposes a novel development and evaluation 
of a microgrid controller (MGC) that coordinates the cluster 
operation of the Adjuntas MG to achieve high resilience and 
cost-effective operation. Two operation modes are 
considered: normal and self-healing. 

Map from https://cambiopr.org/solmastechos/  

https://cambiopr.org/solmastechos/
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Example: Adjuntas Microgrids

Microgrid 1

Microgrid 2
Square of 
Adjuntas

Lucy’s pizza

Church

Digital Point

Hardware 
Store

Furniture 
stores

Optometry
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The main loads are being 
monitored; the meters collect 
voltages, active and reactive 
power for each of the phases. 

Data collection
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Simulink Model
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